
Our earliest work on nonlinear wave propagation in rock involved a series of experiments
suggested by the theory extant at that time (Johnson et al., 1987). This theory, which we term the
traditional theory,  is a Landau theory (Landau and Lifshitz, 1986). It was borrowed from solid
state physic/acoustics.  The traditional theory predicts behavior in qualitative accord with some
experimental observations.  To provide a partial explanation for our choice of experiments, to have
in hand the elements of the traditional theory, and to offer in contrast to the theory introduced
below, we sketch the traditional theory here (see, e.g., McCall, 1993).

The empirical and widely known fact is that the velocity  of sound in rock is a sensitive
function of pressure.  The pressure is in turn related to the strain field. One could sensibly write

c2  =  co2 [ 1 + β (∂u
∂x

 )+ δ (∂u
∂x)

2  +...
 ], (1)

where c is the wave speed, co is the wave speed at zero strain, (∂u
∂x

 ) is the strain, and β and δ are

nonlinear parameters that characterize the cubic and quartic anharmonicities . [The Landau theory
arrives at the functional equivalent of Eq.(1) by employing an elastic energy that is a function of
the stain field that is invariant with respect to the symmetry of the rock.]  When a strain dependent
velocity is incorporated into the wave equation for the displacement field a variety of phenomena
are predicted. The most evident of these is the property of harmonic generation. That is, when a
monochromatic wave is broadcast into a rock, the nonlinearity in the rock generates a spectrum of
harmonics. The treatment of harmonic generation, using the traditional theory, leads to a
quantitative description to be tested in order to establish the correctness of the fundamental model
(i.e. the Landau theory). Our first experiments were an attempt to verify  the simplest predictions
of the traditional theory.

Semi-quantitative agreement with these predictions has been found. [For example the
amplitude at 2ω is predicted to increase as (kU)2  and found to increase approximately as (kU)1.6

where k is wavenumber and U is the source displacement amplitude.]  However, from the vantage
point afforded by numerous experiments on rock (involving broad strain and stress intervals, a
broad frequency range) a more complex picture emerges.  Observations show that a great deal is
going on that is not adequately described in the traditional theory (see e.g., Johnson et al., 1995 and
Guyer et al., 1995).   The picture that is emerging from studies on rock is that they have important
properties endemic to their nature that can be observed by their nonlinear response, but that cannot
be described by a traditional theoretical approach.   In the following, we introduce evidence for
some of the unusual behavior and sketch the new theoretical paradigm.

Hysteresis, discrete memory, and nonlinearity.
Introduction.  The hysteretic nature of the elastic response of rocks is a behavior having a long and
venerable history.  For example, the work of Gardner and collaborators (Gardner et al., 1966), in
understanding the influence of effective pressure on the equation of state, called particular attention
to the importance of "the path to a stress state".  Holcomb (1978;1981),  in an impressive set of
experiments, documented both hysteresis and the remarkable property of discrete memory (also
end point memory).   It is clear from work this work that the hysteretic behavior of the elastic
response provides a strong clue to the microscopic structure of rock, i.e. to the nature of the
compliant portion of the material:  grain to grain contacts, cracks, contained fluids, etc.  It is the
behavior of the compliant component of the material that determines the linear/nonlinear response
of the rock in a quasi-static measurement, in wave propagation, etc. (see e.g., Gist, 1993).  The



microscopic structure in rocks has added importance in the context of developing a connection
between elastic response and fluid transport.

Hysteresis, discrete memory, nonlinearity can be regarded as a nuisance when attempting a
simple characterization of the elastic properties of rock.  This is fundamentally because there is no
theoretical paradigm to help sort out which velocity of sound or modulus is the "correct" one. Thus
it has been standard practice to get eliminate hysteresis or find procedures that mitigate its
influence.  In doing so one does away with what is potentially of great importance.

A new theoretical paradigm for the description of rock elasticity  has been developed at Los
Alamos.  The properties of hysteresis and discrete memory are used to advantage because we have
the means to understand their source and consequences. The paradigm applies data from a rock to
construct the fundamental theoretical model for the description of the elastic properties of the rock.
Let us  illustrate hysteresis and discrete memory  seen in a static test on sandstone.  We will then
sketch the elements of the new paradigm that describes these properties and other elastic properties
of rock.

Figure 2a,b illustrates the (a) stress-time history (stress protocol) and the (b) corresponding
stress-strain response for a Berea sandstone sample.  Results are from a uniaxial static test.
Hysteresis is illustrated by the different stress-strain paths of the outer loops in the lower figure.
Note that the stress-strain relation is nonlinear along both loops.   The multivalued nature of the
curves and the fact that they are nonlinear implies that the derivative of stress-strain (the modulus)
is also nonlinear and hysteretic.  The stress protocol has a number of smaller cyclic excursions in
order to explore the effect of smaller stress-strain deviations and to illustrate the property of
discrete memory.   A rock with discrete memory remembers its elastic state.  For example; (1) the
rock is taken to a  prescribed initial stress state, (2) the stress is slightly relieved, (3) the stress is
returned to that of the initial state. The strain in the rock will return to the strain level of the initial
state.  Further increase of the stress, beyond that of the initial state, leads to the same sequence of
strains as those that would have occurred had the cyclic excursion, steps (2) and (3), not occurred.
In essence, the rock "remembers"  the strain level of the initial state and the stress-strain trajectory
it was on.
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Figure 2.  Top:  pressure (stress) protocol for result shown in bottom plot.  Bottom:  static
stress-strain data for Berea sandstone illustrating a nonlinear equation of state:  hysteresis, and
point memory (from Hilbert et al., 1994).

The significant points we note from this experiment are, (1) the stress-strain relation is
nonlinear,  (2) the stress-strain relation and the modulus-strain relation are hysteretic,  (3)  the
stress-strain relation has discrete memory, and  (4)  the  modulus is stress path dependent.
Hysteresis and discrete memory are manifestations of nonlinearity, and vice versa. [Recently
Boitnott (1993) and  Pyrak-Nolte et. al. (1990) following Scholz and co-workers (Scholz 1979)
looked at the elastic properties of joints and found them to have more extreme hysteresis (with
discrete memory) than the rock itself.]
             We have conducted wave propagation and resonance experiments that partially adhere to,
or in some cases do not adhere to, the predictions of the traditional theory.  The traditional theory
makes no attempt to describe experiments that show hysteresis.  We describe a new theory in the
following section that provides an explanation of our wave propagation observations, and static
observations as well.

The  New Paradigm    McCall and Guyer (1994) (MG in the following) have introduced a new
model of rock elasticity and developed this model in a series of papers.  As the model developed,
it began to be referred to as the new paradigm.  We use this terminology here. [The basic idea
behind the model introduced by MG is present in the earlier work of Walsh (1966) and Holcomb
(1978;1981).]  Let us describe some of the elements of the new paradigm.  The new paradigm
takes the elastic properties of a macroscopic sample of material to result from the workings of a
large number (order 1012) mesoscopic elastic elements in approximately one cubic centimeter of
material. These elastic elements individually have complex behavior. The central construct of the
new paradigm is P-M space, a space in which the behavior of the elastic elements is tracked, and
the density of elastic elements in P-M space, ρ.

One can construct  a model P-M space and follow its consequences.  This was done by
MG.  The richness of the new paradigm is that it provides a way of finding ρ, the density of elastic



elements in P-M space. Thus the central quantity required for description of stress-strain ,wave
propagation,  etc., is derived from experiment.  The theory is more elaborate than the traditional
theory, reduces to the traditional theory in the limit of no hysteresis and no discrete memory, and is
also more difficult to apply.  The basic approach is outlined here:

(1)  Begin with a simple model of the essential features of the elastic elements.  This
includes a stress-strain relation that may include hysteresis [a stress stain equation of
state is a force-displacement relationship. No matter how complex the nature of the
individual units, the essential features of its behavior for the purpose  of its
participation in a stress-strain response  is the force-displacement rule.]

(2)  Create the P-M space description of the workings of a large number of the elastic
elements .

(3)  Create a model for the geometry of the elastic elements [e.g. place them on a hexagonal
lattice].

(4)  Prescribe a pressure protocol.
(5)  Create a model for calculating the stress strain equation of state of a lattice of elastic

elements, e.g. effective medium theory, mean field theory, etc.
(6)  Create a stress strain curve.

The procedure for assembly of (1) - (5) into a stress strain equation of state with discrete
memory is illustrated in various of the papers (e.g., McCall and Guyer, 1994;  Guyer et al., 1995;
Guyer et al., 1995) .  Let us show the ingredients used in an example.  Figures 3a-d will be used
for the illustration.  These are (a) the behavior of the individual elastic elements, (b) the P-M space
density, (c) the pressure protocol and (d) the resulting stress-strain curve.
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Figure 3a.  Hysteretic mesoscopic elastic unit.
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Figure 3b.  P-M space for many hysteretic units.  See text for explanation.
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Figure 3c.  Pressure protocol.
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Figure 3d.  Stress-strain diagram resulting from hysteretic unit distribution shown in
Figure 3b and the pressure protocol shown in Figure 3c.

The basic element of the model, the hysteretic mesoscopic elastic unit, HMEU, is shown in
Figure 3a.  The figure illustrates length-pressure space for an individual HMEU.  In the un-
pressured state, the HMEU has length Lo.  As pressure is increased to Pc, the unit abruptly
shortens, and remains at this length for increasing pressure.  As pressure is released, the HMEU
abruptly opens at Pc, a pressure lower than or equal to Po, corresponding to Lc.  Note that the
HMEU shown in the figure displays hysteresis.  A large number of the HMEUs with differing
Lo, Pc, Po, and Lc comprise a model of the compliant portion of a sample material.  The HMEUs
can be plotted in P-M space.  Such a plot is shown in Figure 3b.  This plot shows the opening
pressure versus closing pressure for all HMEUs in a sample, as illustrated by each circle.  The
model material is composed of a range of HMEUs, some exhibiting no hysteresis in length-
pressure space.  The remaining HMEUs exhibit varying ranges of hysteresis.  Non-hysteretic units
fall on the diagonal and hysteretic units fill out the bottom triangle in P-M space.  The more
hysteretic the HMEU is, the farther from the diagonal it resides.

The P-M plot is very useful because it can be used to construct a stress-strain plot.  This is
illustrated as follows.  If a pressure protocol such as that shown in Figure 3c is followed, it can be
mapped into P-M space as shown by the bold line in Figure 3b.

Figure 3d illustrates the resulting stress-strain relation for the HMEU distribution in Figure
3b coupled with the pressure protocol in Figure 3c.  The loop  has the all of general characteristics
of the data for Berea sandstone shown in Figure 1.   In this manner, beginning with the HMEU
building block and applying a suite of them in an effective medium approach, a realistic stress-
strain plot that includes hysteresis and discrete memory is constructed.

One of the most informative aspects of this model is the insight it provides into the
compliant microstructure, the individual HMEUs.  For example, in following the pressure
protocol shown in Figure 3c, it is observed that as pressure increases in P-M space, HMEUs close
below the horizontal line along the Po axis.  So at pressure position 1, all units below the horizontal
line are closed.  As pressure is released, those units that re-open are described by a vertical line
moving toward the origin along the Pc axis.  This is important.  It means that increasing and
decreasing static pressure samples different volumes of HMEUs.  This is, in fact, the explanation
for global hysteresis in Figure 3d..



Another important point is that one can predict the low stress amplitude modulus from the
shape of the outer hysteresis loop (see Guyer and McCall, 1994).  The model shows that as
pressure deviation becomes smaller and smaller, the slope of the tangent of the hysteresis loop (tip
to tip) becomes smaller and smaller.  There is a continuum of tangent slopes from large static
pressure deviations to small.  This implies (but remains as yet unproven!) that the dynamic
modulus can be predicted from static measurements, and that the explanation of the difference lies
in which HMEUs are affected.  This will be addressed further below.

We have shown how one begins with a suite of HMEUs with no assumption about their
properties except their opening and closing lengths and their distribution in P-M space, and
produced a hysteretic stress-strain curve.  Guyer and McCall also show that one can begin with the
stress-strain relation for a rock, and invert the data for the HMEU structure with no assumptions
about the details (e.g., crack structure, fluid content).  The characteristics of these details is a natural
step and are part of the work proposed here.  This approach allows one to interrogate the medium
with no assumptions about physical characteristics, and then infer them.  The opposite approach as
has been used by many (e.g., Toksoz et al., 1976; Walsh, 1965;  O'Connell and Budiansky, 1977)

The new paradigm gives the density in P-M space central status.  The P-M space density
takes the place of the nonlinear parameters of the traditional theory.  In the illustration above the
density was assumed known.  An important feature of the new paradigm is that it suggests a
procedure for learning the density in P-M space from a suitable data set. This suggestion has been
implemented and is described in the paper by Guyer et al. (1995).  An illustration of what results
from this work is given in Figure 4 where we show a P-M space density found from analysis of a
stress strain equation of state on a Berea sandstone. One obtains the distribution of the HMEUs
from the inversion.  Note the concentration along the diagonal and at small Po and Pc.  In addition,
the resulting P-M space density has been used to successfully predict the result of additional stress
strain experiments.

Thus far we have devoted our discussion of the model to the static case, i.e. we can
describes stress-strain data (experiments involving static or quasi-static stress-strain
manipulation.).  Now let us turn to discussion of waves, i.e. dynamic stress-strain experiments.



0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1

Pr
es

su
re

Strain

4

3

2
1(c)

0

20

40

60

80

100

0 20 40 60 80 100

P
o

P
c

(a)

Figure 4.  Measured stress-strain curve for Berea sandstone (left) and P-M space representation of
the stress-strain data (right).

Wave Propagation.   Does the P-M space model describe observations from wave propagation as
well?   We believe that it does.  We describe a measurement in sandstone as an example.  Figure 5
shows the result of a resonant bar experiment using a sample of the "linear" material, PVC, and a
sample of highly elastically nonlinear material, Fontainebleau sandstone. In this experiment the
frequency is swept through the fundamental resonance at fixed drive amplitude, for a series of
increasing drive amplitudes. As the drive amplitude increases the resonance frequency remains
constant in the PVC;  however, in the sandstone, the resonant frequency shifts to lower frequency
with increasing drive level. The shift in resonance frequency is proportional to the amplitude of the
drive. The peak shift in the sandstone is a clear manifestation of elastic nonlinear response, a
response that the PVC does not display.  The behavior in the sandstone is different for downgoing
versus upgoing frequency sweep.  This is typical of rock, but beyond the scope of our focus here.



Application of the traditional theory to this experimental scenario leads to results in
qualitative and quantitative disagreement with the experiment (Guyer et al., 1995). For example,
prediction of the change in resonant frequency with detected acceleration is entirely incorrect by
application of the traditional theory.  This experiment can be given quantitative explanation using
the new paradigm (Guyer et al., 1995). The explanation is both qualitative and quantitative. The
quantitative explanation is gratifying.  It is achieved using, as input, data from a P-M space density
found empirically.
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Figure 6.  Resonant response as function of drive level in PVC (left) and sandstone (right).

We have in hand a powerful theoretical construct for the synthesis and use of data on rocks
and other compliant materials. We also have a variety of experimental tools, stress strain
apparatus, wave propagation apparatus, and resonant bar apparatus, to bring to bear. Our goal is an
integrated experimental/theoretical program to push the understanding of rock elasticity



significantly forward. The first step toward this goal is the development of a robust quantitative
methods for measuring and applying the equation of state.


